

BRITISH RAILWAYS
(Private-Not for Publication)

PLYMOUTH SIGNAL BOX

DESCRIPTION and METHOD of OPERATION
of the

SIGNALLING CONTROL PANEL

SIGNALLING RECORD SOCIETY

WWW.s-r-s.org.uk DJGITAL ARCHIVE

This PDF Copy has been provided free of charge by David Allen in order to assist your research into UK signalling.

This file is one of a number scanned by David Allen using material from his own collection and from the collections of Phil Deaves, Robert Dey, David Ingham, Simon Lowe, John McCrickard, John Midcalf, Richard Maund, Richard Pulleyn, Roger Newman and Chris Wolstenholmes. Thank you one and all. Many of the original documents are now in the SRS Archive or at the National Railway Museum.

You may also like to provide copies of Signalling Notices and Weekly (and periodical) Operating Notices or other notices as scans or as originals. The SRS is always willing to accept donations of any signalling or signalling related material for inclusion in the Society's Archive. Please contact the Archivist in the first instance.

For a list of PDFs currently available visit the Archives pages of the SRS Web Site.

If you have benefited from this PDF copy, why not join the Signalling Record Society and receive support for your researches and access to the Society's Archives

Members receive "The Signalling Record" six times annually plus a newsletter and have the opportunity to purchase SRS books and other publications at a discount. They also have access to back issues of The Newsletter and The Signalling Record which are only available to members. These contain a wealth of information accumulated since 1970, much of which is not readily available anywhere else.

In addition, Members have the opportunity to join signalling related visits to locations on the UK national and London Underground systems; and to other UK Railways.

To join the Signalling Record Society visit

www.s-r-s.org.uk/membform.html

Description and Method of Operation of the Signalling Control Panel

PART 1-DESCRIPTION

1. GENERAL

The installation at Plymouth comprises electrically worked points, multiple aspect colour light running signals, miniature yellow and position light shunting signals. These are all operated from a control panel of the "mosaic" type using the "Entrance-Exit" method of operation.

2. CONTROL PANEL

The Control Panel depicts diagrammatically the running lines, points and signais in the area controlled therefrom.
(1) Throughout the pictorial layout depicting the run- Route ning lines are series of rectangular apertures uni- Indications formly spaced in which white lights appear when the route has been correctly set for the passage of a train. These lights extend from the position on the panel corresponding to the signal in question as far as the next signal in advance. In addition, as explained in Part 2, certain white lights become illuminated in isolation.
(2) The extent of all track circuits is also shown on the Track pictorial layout and their occupancy is indicated by the Circuit display of a series of red lights in the aforementioned Indications apertures.

When no lights appear or the white lights are displayed the applicable track circuit is clear.
(3) An indication that a power supply is available for the track circuit indications is provided in the lower right hand portion of the panel.

Track Circuit Indications Power Supply
(4) On the Down Main, Up Main, Down Devonport Train Branch and Up Millbay Branch a red indicator similar Approaching to a track circuit indication is given. This indicates relative Indications to a particular signal the state of the line sufficiently far in rear so that the signalman may know when the replacement to danger of that signal would cause a change to a more restrictive aspect in the face of an approaching train.
(5) In the upper portion of the signalling control panel Point free thumb switches are placed in horizontal rows, Switches one such switch being provided for each set of points, to enable the points to be individually operated if and when required. An arrow is engraved on the face of the switch, and the latter may be turned so that the arrow is positioned upwards or inclined either to the left or right. To individually reverse or maintain reverse a set of points, the point switch is turned to the right, and similarly to the left for the normal position. The switch is otherwise allowed to remain in the mid-position when
automatic route setting is in operation. To the left and right of the point switch is a list of the positions in which all other points, interlocking with the points in question must be locked before the points can respond to the switch. A red light mounted immediately above the point switch is caused to be illuminated whenever the points are locked either by the occupation of track circuits or by reason of the interlocking with signals, in which circumstances the points will not respond to the operation of the switch. The red light also appears immediately the point switch is placed to either the normal or reverse position and the points have correctly responded to indicate that the points will be held in that position until the switch is restored to the mid-position.
(6) Immediately to the left or right of the red light re- Point ferred to in the above paragraph, a white light is illumin- Indicators ated when the points are correctly detected normal or reverse as the case may be. The number corresponding to that of the point switch is affixed on the sleeper at the appropriate points together with an arrow which indicates the direction of movement of the point tongues required to place the points in the normal position.
(7) In addition to the above point indications, the oper- Point ation to the ON position of the switch labelled POINT Indicators INDICATIONS in the lower right hand portion of the signalling control panel, will cause the applicable rectangular aperture forming the normal or reverse position of the points on the track diagram to be illuminated by a white light. The appropriate indication will remain illuminated so long as the POINT INDICATION switch is in the ON position. These two white indications will also be caused to flash alternatively irrespective of the position of the aforementioned switch whenever the points concerned are out of correspondence with their controlling relays and therefore during the time the points are being moved.
(8) In the event of a point contactor failing to release Point after the points have been called and correctly set a flash- Fault ing red light will appear to the right of the "Point" switch Indications in the row at the bottom right of the control panel and a warning buzzer will sound. The audible warning can be silenced by turning the switch from the "Clear" to the "Fault" position. The visual warning will then exhibit a steady red light which will remain until the lineman has corrected the fault whereupon the audible warning will again sound and the white light commence flashing. The audible warning is silenced and a steady white light exhibited by returning the switch to the "Clear" position.
(9) For each signal a free rotary switch is provided on Signal the panel track line in a position corresponding to the Switches site of the signal. Engraved on the face of the switch are
one or two arrows. Multiple aspect colour light signals having no subsidiary shunting signals are controlled by a switch having one red arrow. If such a signal is provided with a subsidiary shunting signal, it is controlled by a rotary switch having one red and one yellow arrow. Ground position light shunting signals are controlled by rotary switches having one yellow arrow. To maintain or restore a signal to danger the switch must lie in such a position that the engraved arrow or arrows be at right angles to the line to which the signal refers (normal position), whilst as a preliminary to clearing the signal the switch must be turned through 90° so that the arrow points in the same direction as the movement controlled by the signal. In the case of those switches having two arrows, the red arrow should be turned in the direction of the movement if it is required to clear the main aspect, calling-on aspect, or miniature yellow aspect; the yellow arrow should be turned in the direction of the movement if it is required to clear the position light shunting aspect.
(10) Incorporated in the signal profile adjacent to each Signal signal switch is an aperture capable of displaying either Indicators a red or a green light according as the signal is in the "On" position or is exhibiting any one of the proceed aspects respectively. In the case of multiple aspect signals, total failure of the signal lamp will cause the indication light in the signal profile to be extinguished. In the case of switches operating slots on signals controlled by other signal boxes, a white light is given in the aperture in the signal profile when the slot has been taken off, irrespective of whether the signal is at danger or not by reason of track circuit or other controls. The illumination of a red indication in such an aperture indicates that the slot has correctly replaced the controlled signal to danger.
(11) The profiles on the panel of the two Limit of Shunt indicators on the Up and Down main lines at the west and east end of the station respectively include apertures in which a red light is exhibited, indicating that the lamps in these indicators are correctly illuminated.
(12) All signals and slots are approach locked where Approach necessary i.e. the interlocking will be held even if the Locking signal or slot switch is restored normal should a train have reached a certain point on the approach side of the signal whilst a proceed aspect was being displayed. The interlocking will then be held until either the train passes the signal or an automatic time release has operated. The time release will not commence to operate until the signal is properly at danger, and during the time the approach locking is effective the route lights concerned will remain alight. The standard timing of the automatic release is two minutes in the case of signals controlling running movements and 30 seconds in the case of ground shunt signals except those automatically cleared which are subject to two minutes.
(13) Except in the case of certain slot switches (i.e. 62, Push 67,68 and 71) a push button is provided in the track Buttons line at the forward end of the route. In addition to turning the signal switch to the reverse position the appropriate push button for the desired route must be subsequently momentarily depressed in order to clear the signal.

In certain cases a ground position light signal is provided in advance of a mutliple aspect colour light signal. In such cases it will only be necessary to depress the push-button immediately to the rear of the multiple aspect colour light signal next in advance or, in the case of miniature yellow signals for movements to sidings, the push button at the forward end of the route, in order to set up the complete route and automatically clear the intermediate position light ground signal. In such cases the rotary entrance switch for the position light ground signal concerned must be in the normal position.

In order more readily to locate the appropriate push buttons, they are coloured to agree with the colour of the arrow on the corresponding signal switch, i.e., they are coloured accordingly red, yellow or red/yellow.
(14) The extent of the overlap ahead of a signal is Extent of denoted on the panel by a dot being placed inside the Overlap rectangle that appears in the track line to indicate a track circuit joint.
(15) Plungers for operating Emergency Block Bells Emergency when their use is required by the Track Circuit Block Beils Regulations are provided on the panel adjacent to the ends of the diagrammatic track leading to each adjacent signal box.
When a bell is being rung from an adjacent signal box a white light above the respective plunger will be illuminated for several seconds to aid identification.
(16) At a position on the panel adjacent to certain Train platform starting signals (as shown below), a flashing Ready-toblue light will be displayed when the platform staff have Indicators operated a Train Ready-to-Start Plunger. The light will continue to flash until the signal controlling the departure of the train is cleared when the light will be extinguished.
Train Ready-to-Start indicators are provided for the following platforms:

For trains starting in the Down direction:
Platforms 2, 3, 4, 5, 6, 7 and 8.
For trains starting in the Up direction:
Platforms 5, 6, 7 and 8.
(17) For the emergency operation of points 201-209 Point and 271-275, hand cranks are located one each at Lipson Hand and Devonport Junctions and these are released by depressing a plunger on the panel adjacent to the relevant points. A white light over each plunger is normally exhibited, indicating that the hand crank is correctly locked in the release instrument, this white light is replaced by a red light when the hand crank has been released.

Six hand cranks are provided for the emergency operation of the points in the station area, each housed in a glass fronted locked box on the operating floor.
(18) Ground frames exist at Cornwall Junction and Ground East and West of Devonport Albert Road Station. Two- Frame position switches, one for each set of points, are located on the control panel adjacent to the diagrammatic position of the points themselves.

When the ground frame is not in use the release switch stands in the normal (N) position and is placed in the reverse (R) position to release the ground frame. The aperture to the left of the release switch exhibits a red light when interlocking conditions prevent a release being given. The aperture to the right of the switch exhibits a white light when the switch is turned to release the ground frame. This white light is replaced by a red light when the release has been taken.
(19) Emergency detonator placers are sited on the Up Emergency and Down Lines at the west end of Mutley Tunnel and to Detonator the west of Cornwall Loop Junction. They are operated Placers by turning the appropriate two-position switch mounted on the panel from "OFF" to "ON". When the detonators are off the line a white light is exhibited to the left of the appropriate switch. When the detonators are on the line a red light to the right of the switch is exhibited.
(20) Also located in the lower right hand portion of Miscelthe signalling control panel are the following, reference laneous to their operation being contained in Part 2 of this publi- Equipment cation.
(1) Earth Leakage indicator and switch.
(2) Power Supply indication and switch.
(3) Signal Lamps Auxiliary Filament Warning and Switch.
(4) Switch for dimming ground signals.
(5) Plunger for summoning lineman.
(6) Switch for dimming panel lighting intensity.

In the top left hand corner of the panel there is located a socket for testing Panel Indication Lamps.
(21) For a description and method of operation of the Train train Describer and Telephone Panel which is mounted Describer above the Signalling Control Panel, refer to separate Panel publications.

PART 2-METHOD OF OPERATION

1. POINTS

(1) Points are normally operated automatically to the Automatic required position as necessary whenever a signal switch Operation and associated push-button has been operated to clear a desired signal provided the point switch is in its midposition and the points are free of interlocking or track circuit control. The setting up of a route, as the process
of reversing a signal switch and depressing the pushbutton is termed, calls the points to the required position and when they are properly set locks them in that position for as long as the signal switch remains reverse.
(2) In general, points will continue to remain in the Points same position even after the signal switch is restored generally normal until called to a different position by the setting ${ }^{\text {non-restored }}$ up of another route. An exception is made for catch points protecting the running line and in these cases, the points concerned will be called to the normal position automatically but not locked as soon as the signal switch has been restored normal and the points have become free of in-ter-locking or track circuit control.
(3) The Points may also be operated individually, if Individual free, by use of the point switch. When the points have set Operation properly, they will become locked and it will not be possible to set up a route which requires the points in the opposite position until the switch is replaced to the midposition. When it is desired to turn the switch from normal to reverse or vice versa, a pause must be made in the mid-position until the red lock light is extinguished
(4) The points, whether being set automatically or in- Point-todividually can only operate in the correct sequence as Point demanded by the point-to-point interlocking. When oper- Interlocking ating points individually, the point switches of all oper points which interlock with the points in question must be placed in the position corresponding with the point setting demanded by the interlocking.
(5) The points will remain locked after being set for TrackCircuit a route if the approach locking becomes effective until and Route the time release has operated, or, if a train has passed Locking the signal, until all the relevant track circuits have been cleared, or, in the case of trailing points in the overlap for the signal concerned, a separate automatic time release will come into operation to free the points in order to cater for a train not proceeding beyond the signal next ahead immediately protecting the points. The latter time release is adjusted to ensure that such a train has come to a stand at the signal in question.
(6) In the case of those facing points which are in- Approach sufficiently far in advance of the protecting signal to ensure Locking of that they will complete their movement should they com- Facing mence to move immediately the signal is passed by a train inadvertently, in addition to the above track circuit locking, the points will also be held by the occupation of track circuits on the approach side of the protecting signal for a predetermined time even if the signal is maintained at danger to ensure that they cannot be reached by a train under any circumstances whilst they are in motion under normal conditions. This track circuit locking is released by the operation of an automatic time release to permit the points being altered after the train has come to a stand at the protecting signal.
(7) In order to facilitate traffic working facing points Facing are not locked in either position when the signal next Points in in rear of the signal immediately protecting such points Overlap is operated to a proceed aspect provided that the overlap applicable to the position to which the points may be altered is clear. Approach locking of these points, however, will apply as in the foregoing paragraph.
(8) Should the two white indications forming the normal and reverse position of the points on the track diagram continue to flash alternately for a greater time than would ordinarily be taken for the points to complete their movement after a route has been set up, the signal switch should be restored, and an attempt should be made to operate the points by means of the individual point switch before treating them as defective. If an obstruction unduly interferes with the free movement of the points an overload protection device will come into operation to disconnect the power supply and the points will be stopped in mid-stroke. This device will be automatically reset as soon as the point switch is operated to reverse the direction of motion of the points, so that further attempts can be made to set the points to the required position.
(9) During the time that hand-signalling has to be re- Hand sorted to or whenever other circumstances dictate, the Signalling point switches must always be used to set and lock the points in the required position before a train is authorised to travel over them other than by means of the fixed signals. The points must not be assumed locked when the switch is turned to the required position unless the red lock light is illuminated. This does not avoid the need for the points to be clipped for each movement as necessary. One of the two white indications forming the normal and reverse position of the points on the track diagram as appropriate may be illuminated by the operation to ON of the POINT INDICATIONS switch. When these indications are in use they will be unaffected by the operation of the route lights described below in Section 2.
(10) In the event of the "Fault" indication becoming Point displayed the lineman must be immediately advised and Contactor no attempt must be made to move any points, either in- Fault dividually or by route setting, until the lineman has advised the signalman in which group of points the failure has occurred. Normal working may then be resumed except in the affected area.
All points in the affected area must be treated as defective and no attempt should be made to operate them from the panel, either individually or by route setting, until the failure has been rectified.
(11) If it becomes necessary to resort to hand crank Hand operation all signals interlocking with the defective points Crank must be first placed at danger. When this has been done Operation and the defective points are in the station area a hand
crank may be obtained by breaking the glass in one of the special hand crank boxes provided and issued to the person appointed to operate the points. Only in cases of extreme emergency should more than one hand crank be issued. In the case of defective points in the Lipson and Devonport Junction areas the appropriate hand crank is located in an interlocked release instrument on the site and may only be withdrawn on an electrical release being given from the signal box.

When the hand crank is electrically released the person appointed to operate the points must telephone the signalman when he arrives at the site and await instructions before attempting to remove the hand crank from the release instrument.

When a hand crank has been obtained the person to whom it is issued must then proceed to the site of the defective points and telephone the signalman for further instructions. A signal post telephone may be used for this purpose.

Before the hand crank may be inserted in the point machine a padlocked clasp or strap covering a plug on the top of the machine must be unfastened and lifted. This action will cut off the electric power from the points After the hand crank has been removed from the machine the strap must not under any circumstances be replaced over the plug in the machine, until the signalman has given permission.

The signalman must not authorise the replacement of this strap if he has given permission for a train to pass over the points until such train has cleared the points.

During the time of failure it may, however, be feasible to properly signal movements other than over the defective points. Attention is drawn to the importance of ascertaining that both facing and trailing points are correctly set before a train is authorised to pass over them other than by means of the fixed signals.
(12) When it is necessary to withdraw a hand crank Hand from one of the instruments referred to in para (11) the Crank signalman must depress the appropriate release plunger Instrume on the control panel, causing the white light above the plunger to be replaced by a red light and a release to be given to the hand crank instrument. This will also cause a pointer on the hand crank instrument to be deflected. The hand crank may then be rotated through 180 degrees in an anti-clockwise direction and withdrawn by pulling it away from the instrument. The signalman must keep the plunger depressed until he receives an assurance that the hand crank has been withdrawn.

To replace the hand-crank it must be inserted in the instrument with the free end upwards and rotated in a clockwise direction until it hangs vertically downwards. The red light above the plunger on the control panel will then be replaced by a white light.

The person replacing the hand crank in the release instrument must remain at the telephone adjacent to the release instrument until he receives permission to leave from the signalman.
(13) In the event of a failure occurring whereby the Failure of hand crank cannot be withdrawn from the instrument an Hand Crank emergency key may be obtained by breaking the glass in Instruments one of the special key boxes provided in the signal box. The emergency key must then be taken to the hand crank release instrument and after the signalman's permission has been obtained, inserted in the same key hole in the front of the instrument and turned to release the hand crank which may then be withdrawn from the instrument and used to operate the points in accordance with para (11).

When the hand crank has been restored to the instrument after being used to operate the points the emergency key must be removed from the small keyhole and returned to the signal box.
(14) The point machines are of the Westinghouse Brake Type of and Signal Company's style M3 and the relevant instruc- Point tions in the General Appendix must be complied with in Machine so far as they apply.
(15) A release can be given to operate the ground frame Ground points at Cornwall Junction and Devonport (Albert Road) Frame when the red light to the left of the two-position switch Operated described in Part 1.2.(18) is extinguished.
On receiving the shunters request for a release, and provided the red lock light is not exhibited, the signalman may turn the appropriate release switch from normal to reverse. A release is then given to the ground frame and a white light exhibited to the right of the two-position switch. The shunter will then withdraw the key and operate the ground frame in accordance with the instructions contained in the Regional General Appendix in so far as they apply. When the Annetts key is turned from position 1 to position 2 in the release instrument the right hand release light on the control panel will change from white to red. This red light will remain exhibited so long as Annetts key is withdrawn.
No movement conflicting with the ground frame can be set up until the ground frame points have been restored, the Annetts key returned to the key release instrument and turned clockwise to position 1 and the release switch on the control panel restored to the normal position, when the white release light will be extinguished.
(16) Switch collars must be affixed to the point switches whenever the occasion demands.

2. SIGNALS

(1) Signals and slots are operated by first turning the Operation appropriate signal switch and then by momentarily de-
pressing the push-button for the required route (where provided).
(2) For the signal or slot to clear, the switches for all Interlocking conflicting signals and slots must have been replaced to the normal position, and such signals have been returned properly to danger and freed of approach locking after the previous movement.
(3) Where points are involved these will be set auto- Automatic matically and locked in the required position if not already Route in that position provided they are free to be so set at the Setting instant of turning the signal or slot switch and depressing the push-button. Should a point switch not be in its midposition but in a position holding the points other than as required, the point switch must first be placed to its mid-position before the signal or slot switch and pushbutton are operated. Similarly if the points are locked by reason of the interlocking or track circuit occupancy the action of turning the signal or slot switch and pressing the push-button will not be effective.

In the case of certain signals alternative routes are available to the same destination and in these cases automatic preference is given to one of these routes. A list of these alternative routes and method of selecting the non-preferred routes is given in appendix " B ".
(4) Where points are involved, it follows, therefore, Prevention that a route cannot be preselected, i.e. stored up, since of the operation of the push-button is not effective unless at Preselection that instant all the points concerned are free to respond or are already set in the required position.
(5) After the route has been set up, and the points where Indication these are involved have been locked in the required posi- of Route tion, a succession of white route lights will be illumina- ${ }^{-1}$ Up ted in turn throughout the extent of the route. Whilst the route is so illuminated no conflicting or opposing route can be set up.

Should a signal become approach locked, the route lights will continue to be displayed until the approach locking has been released.
(6) If a route has been correctly set up as described Clearing the signal will clear either immediately or after the neces- of sary delay where approach control is in force.
(7) When a train has passed a signal which has been Track cleared for it, the white route lights appropriate to each Circuit successive track circuit will be extinguished and red Occupancy track circuit lights will take their place. If the signal switch has not been restored to normal after the passage of the train, white route lights will again take the place of the red lights as each track circuit becomes unoccupied. Should a train pass a signal at danger, all the track circuit indications applicable to the particular track circuit will become illuminated irrespective of point setting.

In general, the white route lights in advance of a train
will remain illuminated until the train has occupied the appropriate track circuit, although the signal switch applicable to the signal in rear may have been restored to normal. In some cases, however, in order to facilitate traffic working in the station area, the white route lights in advance of a train may be extinguished after an interval of time consistent with the train having come to a stand. Under these conditions, the interlocking has then become freed to enable an opposing shunting movement to take place.
(8) Multiple aspect colour light signals are controlled by track circuits and interlock with points and other signals as far as the next similar signal ahead and also interlock with signals controlling opposing movements within and beyond the overlap. In normal cases these controls extend up to the termination of the O / L but in special cases where such controls would have an adverse effect on traffic working they are modified and the signal in the rear is allowed to display a single yellow (delayed yellow) after the approaching train has been brought nearly to a stand, provided the line is clear and the points are locked correctly up to the next signal.
Certain of the multiple aspect colour light signals are provided with position light calling on signals. In those cases, the appropriate signal switch and push button are operated in the normal manner, but if the track circuit conditions are such that the multiple aspect signal cannot clear due to a train standing in rear of the signal next in advance a calling-on aspect will be displayed to the driver. Once a calling-on aspect has been displayed it will remain thus even though the track circuits in rear of the next signal become unoccupied subsequently. Multiple aspect colour light and position light calling on signals will be replaced to danger on being passed and the signal or slot switch must then be restored to normal in accordance with the Rules, and the signal will not clear again until this has been done and the switch, together with the push-button if provided, re-operated.
(9) Position light shunt signals, where provided sub- Shunt sidiary to multiple aspect colour light signals, interlock Signals with points and signals up to the next signal in advance and beyond as necessary. Where a calling on signal is provided, the two signals are combined, two white lights inclined at an angle of 45° signifying "Shunt Ahead" and this indication with the addition of the letter "C" signifying "Calling On".
Position light shunt signals are replaced to danger on being passed, and the signal switch must be restored to normal as described in paragraph (8) above before the signal can be cleared a second time.
(10) Miniature yellow signals, where provided sub- Miniature sidiary to multiple aspect colour light signals, are used to Yellow control running movements into sidings and other lines Signals
which are not track circuited. They interlock with points and signals and are controlled by track circuits as far as the limit of the signalled area. Miniature yellow signals are generally replaced to danger on being passed, and the signal switch must be restored to normal as described in paragraph (8) above before the signal can be cleared a second time.
(11) Position light ground shunting signals interlock Ground with points and signals up to the next signal in advance Shunting and beyond as necessary. Ground shunting signals, are Signals replaced to danger by the movement clearing the first track circuit ahead of the signal.
(12) In several cases position light ground shunting Ground signals are provided applicable to the line and direction Shunting of traffic movement for which a multiple aspect signal Signals is cleared. In these cases the operation of the signal switch Running to for the multiple aspect signal and the depression of the Movements push-button immediately to the rear of the next multiple aspect signal in advance (or in the case of signals reading into sidings or docks, the push-button at the forward end of the route), will cause the intermediate ground shunting signal to display a proceed aspect but it is essential for these movements that the Entrance switch for the intermediate ground shunting signal is in the normal position. The multiple aspect signal will not clear until the appropriate ground shunting signal is displaying a proceed aspect.

The ground shunting signal will continue to display a proceed aspect when a train is approaching it under these circumstances even after the main signal has been replaced, either by track circuit control or by the replacing to normal of the entrance key, until the train has passed the ground shunting signal.

Should it become necessary to replace the ground shunting signal to danger after having been cleared automatically as described above, the switch for the controlling multiple aspect signal in rear should be restored to normal which will replace both the multiple aspect signal and the ground shunting signal to danger, or if the train has already passed the multiple aspect signal, the ground shunting signal can be put to danger by momentarily turning the ground shunting signal switch to the reverse position and back again to normal. It will NOT be necessary to depress the associated push-button after turning the ground shunting signal switch to the reverse position in this instance.

When such ground shunting signals are used for shunting movements their operation and control is as described in paragraph (1) above.

The signal indications displayed through the aperture in the profile of such ground shunting signals on the signalling control panel will at all times give a correct indication of the aspect exhibited by the signal irrespec-
tive of whether it has been operated automatically or by the operation of the signal switch.
(13) In general when a signal has been cleared and Interlocking the train has passed it, it will not be possible to set up an of opposing opposing route, even though the signal switch may have been restored to normal until the train has passed completely beyond the signal permitting the opposing movement. In order to facilitate certain traffic movements in the station area, this control has been modified in that the opposing route can be set up after a time delay consistent with the train having come to a stand between the two opposing signals.
(14) Where propelling movements could predominate, Propelling position light shunt signals and miniature yellow signals Movements will not be replaced to danger independently of the signal switch until the whole of the train has passed.
Also to facilitate propelling movements it is possible to clear shunt signals at the engine end of the train although the movement has not cleared the intervening track circuits, provided the shunt signals are cleared progressively in the opposite direction to that of the proposed movement.
(15) Under "delayed yellow" conditions and in the case Approach of multiple aspect signals in rear of facing junctions over Control which only a restricted speed is permissible, also where calling on, shunt and miniature yellow signals are provided below multiple aspect signals, the appropriate signal will not clear after the route has been set up until the berth track has been occupied (for a given time if necessary) so as to ensure the speed of the train has been suitably reduced.
(16) Except in emergencies, after a signal has been Restoring cleared for an approaching train, the signal or slot switch Signal must not be restored to normal if the train has passed the ${ }^{\text {Switches }}$ point at which approach locking commences unless an intervening signal is already at danger.
If a multiple aspect signal or a ground shunting signal is replaced to danger in such circumstances, more restrictive aspects would be caused to be displayed in the face of the approaching train. Should the switch for a multiple aspect signal not be restored to normal after the passage of a train, a white light immediately in advance of the switch will be caused to flash until this has been done.
(17) Signal switches should always be maintained in the Normal normal position, except when required to operate a signal Position for a train, in the interests of orderliness and efficient operation of the panel.
(18) When a route is set up preparatory to clearing a Indication multiple aspect colour light signal, the position of any of Overlap facing points which may be in the overlap concerned are
indicated by the appropriate white light forming the normal or reverse position of the points on the track diagram. In addition if any points in the overlap are in that position which will cause the signal to display a delayed yellow aspect, a similar points indication will be given.
(19) If, when a route has been set up and the signal con- Overlaps cerned is displaying or is about to display a delayed yel- where low aspect on account of points in the overlap not being delayed in the required position (whether locked or not), the Aspect operation of the points to the position required can only provided be made by using the individual points switch or by setting up the appropriate route controlling the signal immediately in rear of the points.
(20) Switch and push-button collars must be affixed Switch whenever the circumstances demand this being done. Collars
(21) It is essential that in setting up a route the push- Push-Button button be depressed only after the switch has been placed Operation to the reverse position, otherwise the associated relay will not operate and therefore, the route will not be set up. The push-button must also be fully and deliberately depressed as a mere flick may not allow sufficient time for the relay to operate.

GENERAL NOTES

(1) In the event of a complete power failure, even for Power the limited time such as would exist before the standby Failure supply is connected, this would cause signals to fail in the face of approaching trains and under no circumstances must any route be set up, either by route setting switches and buttons or individual point keys until it has been ascertained that no train is approaching on or foul of the route in question.
(2) During the hours of darkness, the Signals Dimming Signal Lamp Switch should be operated to the Dim position. This will Dimming cause the lamps of all position light ground shunting Switch signals to be dimmed in order to eliminate unnecessary glare to Drivers.
(3) When so desired, the indication lights on the signal- Panel ling control panel and the train describer panel may be Dimming dimmed by the use of the Panel Dimming Switch.
(4) Should the "Power Supply" indicator display Miscel"Stand by" or the "Earth Leakage" or "T.C. Indica- laneous tions", or "Points" indicators show "Fault" the lineman Indications should be notified immediately.

Should the "Signal Lamps" indicator display "Aux" the lineman, if on duty, should be notified immediately. If the lineman is not on duty he should not be specially called but should be notified as soon as he next reports for duty.

When any change occurs in the above indications an
audible warning will sound and the indication concerned will exhibit a flashing light. The audible warning can be silenced by turning the associated switch in the direction of the flashing indication, this action will also cause the indication to exhibit a steady light.
(5) In the event of a lineman not being available at the Linemans signal box, depression of the "Linemans Call Plunger" Call on the control panel will sound klaxon horns in the Corn- Plunger wall Junction, Devonport Junction and Lipson Junction areas and east and west of Plymouth Station.

On hearing the Klaxon the lineman will contact the signalman from the nearest available telephone.
(6) The socket in the top left hand corner of the signal- Lamp ling control panel is for testing indication lamps before Test inserting in the panels.
(7) The emergency block bells and the alarm buzzer provided in conjunction with the switches in the lower right hand portion of the panel should be tested periodically to ensure that they function correctly when required.

APPENDIX A

Signalled Routes and Associated Facilities Abbreviations:
MA - Multiple Aspect Signal
DY - Delayed Yellow Aspect
CO - Call-on Signal
MY - Miniature Yellow Signal
PLS - Position Light Shunt Signal
PLGS - Position Light Ground Shunt Signal
*1 - Provision of facility referred to in Part 2, Section "SIGNALS", clause 14, second paragraph.
*2 - Alternative routes available. See Appendix "B", and Section "SIGNALS", clause 3 second paragraph.

LIST OF ROUTES

Signal No.	Route	Destination	Type of Signal	Notes
2		4 Signal	Slot on L111	
3		5 Signal	MA	
5		14 Signal	MA	
6		14 Signal	MA	
7	A	15 Signal	MA	
7	B	66 Signal	MA with	
			4 position	
			Indicator	
${ }_{10}^{8}$		10 Signal	Slot on MG43	
11		14 Signal	MA	
13	A	15 Signal	MA	
13	B	66 Signal	MA with	
			position 4 Junction	
			Indicator	
14		16 Signal	MA	
	A	Platform 8 via	MA/CO/DY	
15	B	Platform 7 via	MA/CO/DY	
15	C	252 N	${ }^{* 2}$	
15	C	$\begin{aligned} & \text { Platfori } \\ & 252 \mathrm{~N} \end{aligned}$	MA/CO/DY ${ }_{* 2}$	
15	D	141 Signal	PLS	
15	E	Platform 8 via 252R	$\mathrm{MA} / \mathrm{CO} / \mathrm{DY}$	Automatically clears 141A
15	F	Platform 7 via	MA/CO/DY	Automatically clears
15	G	Platform 6 via	MA/CO/DY ${ }^{* 2}$	
		252R		141C
15	H	Platform 5	MA/CO/DY	Automatically clears
15	I	Through Line	MA/CO/DY	Automatically clears
16		18 Signal	MA	
17	A	54 Signal	Slot on MB87 $\& 90$	
17	B	21 Signal	Slot on MB87	
18	A	126 Signal		
18	B	Docks via 210R	MY *2	Automatically clears 126A
18	C	Platform 2 via	MA/CO/DY	Automatically clears
18	D	${ }_{\text {210R }}^{\text {Platform } 3 \text { via }}$		126B
18	D	Platform 3 via 210R	MA/CO/DY	Automatically clears 126C
18	E	Platform 4 via	MA/CO/DY	Automatically clears
18	F	Docks via	MY $\quad{ }_{2}$	126
		210 N		
18	G	Platform 2 via	MA/CO/DY ${ }^{\text {* }}$	
18	H	Platform 3 via	MA/CO/DY	
		210N		
18	I	Platform 4 via 210N	MA/CO/DY ${ }_{\text {*2 }}$	
18	J	Through Line	MA/CO/DY	

Signal No.	Route	Destination	Type of Signal	Notes
18	K	120 Signal	PLS	
18	L	Platform 5	MA/CO/DY	Automatically clears
18	M	Platform 6	MA/CO/DY	Automatically clears
18	N	Platform 7 via 214 N	MA/CO/DY	Automatically clears
18	P	122 Signal	PLS	
18	Q	Platform 7 via 214R	$\mathrm{MA} / \mathrm{CO} / \mathrm{DY}$	Automatically clears 122A
18	R	Platform 8	MA/CO/DY	Automatically clears
18	S	Up Siding 1	MY	122B Automatically clears
18	T	Up Siding 2	MY	122C Automatically clears
21	A	Turn Table	MY	122D
		Siding	MY	
21	B	Platform 8	MA/CO/DY	Automatically clears
21	C	Platform 7	MA/CO/DY	Automatically clears
21	D	Platform 6	MA/CO/DY	Automatically clears
21	E	Platform 5	MA/CO/DY	Automatically clears
21	F	Through Line	MA/CO/DY	Automatically clears
21	G	141 Signal	PLS	
36	A	Spur	MY	
36	B	146 Signal	PLS	
36	C	64 Signal via 242R	MA	
36	D	64 Signal via	PLS	
36	E	Turn Table 1	MY	
36	F	52 Signal	MA	
36	G	52 Signal	PLS	
38	A	146 Signal	PLS	
38	B	64 Signal via 242R	MA	
38	C	64 Signal via 242R	PLS	
38	D	Turn Table 1	MY	
38	E	52 Signal	MA	
38	F	52 Signal	PLS	
40	A	64 Signal	MA	
40	B	64 Signal	PLS	
40	C	Turn Table 1	MY	
40	D	52 Signal	MA	
40	E	52 Signal	PLS	
42	A	64 Signal vịa 245N	MA	
42	B	64 Signal via	PLS	
42	C	Turn Table 1	MY *2	
		via 245N		
42	D	52 Signal via 245N	MA *2	

APPENDIX "C"

RESTORED POINTS

(See Part 2. Section "POINTS" Clause 2)

APPENDIX "D"

Facing points held by Track Circuits on the approach side of the protecting signal.
(See Part 2. Section "POINTS" Clause 6)
210
211
214
227
241
246
263

